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Abstract

In this article, we develop the work of Vuillemin and Nielsen and Kornerup, and show that
incrementality and efficiency can be simultaneously achieved in exact real arithmetic. We
present a formal account of incremental digit representations born out of domain theory,
which includes the redundant binary representation and continued fraction representa-
tion. The generalisation of both these representations leads to the notion of a general
normal product constructed using Mobius transformations. We then examine a specialisa-
tion of general normal products called exact floating point with interesting mathematical
properties. Real functions are captured by the composition of 2-dimensional Msbius
transformations, leading to the notion of expression trees. Various reduction rules and a
lazy form of information flow analysis is used to allow expression trees to be converted
efficiently into the exact floating point representation. Algorithms for the basic arith-
metic operations and the transcendental functions are presented using “redundant if”
statements for range reduction and expression trees derived from the theory of continued
fractions.

KGYWOI'dSZ Arbitrary precision, redundancy, real numbers, real functions, Mébius

transformations, continued fractions, information flow analysis.



1 Introduction

Real numbers are usually represented by finite strings of digits belonging to some digit set.
The real number representation specifies a function that maps strings to real numbers.
However, finite strings of digits can only represent a limited subset of the real numbers
exactly. This means that most real numbers are represented by nearby real numbers
or enclosing real intervals with distinct end-points giving rise to the notion of round-off
errors. This is generally accepted for a wide range of applications. However, it is well-
known that the accumulation of round-off errors due to a large number of calculations
can produce grossly inaccurate or even incorrect results.

Interval analysis [25] has been used to partially circumvent this problem by maintain-
ing a pair of bounding numbers that is guaranteed to contain the real number or interval
in question. However, this interval can get unjustifiably large and thereby convey very
little information.

Alternatively, by allowing infinite strings of digits all the real numbers can be rep-
resented exactly. There have been a number of theoretical and practical attempts to
find a viable framework for exact real arithmetic. Broadly speaking they fall into three

categories:

1. Infinite sequences of linear maps proposed by Avizienis [2] and appeared in
the work of Watanuki and Frcegovac [37], Boechm and Cartwright [4], Di Gianan-
tonio [8], Escardé [11], Nielsen and Kornerup [28] and Ménissier-Morain [24].

2. Continued fraction expansions proposed by Gosper [14], developed by Peyton-
Jones [29] and Vuillemin [35], implemented by Lester [22] and advanced more re-
cently by Kornerup and Matula [17, 18, 19, 20].

3. Infinite composition of Mobius transformations generalizes the other two
frameworks as demonstrated by Vuillemin [35]. Nielsen and Kornerup [28] showed

that this framework can be used to represent quasi-normalized floating point [37].

In this article, we develop the work of Vuillemin [35] and Nielsen and Kornerup [28]
culminating in the presentation of efficient algorithms for exact real arithmetic involving

the basic arithmetic operations and the transcendental operations. We start by noting



that every real number can be represented by a sequence of nested closed intervals whose
lengths converge to zero. The intersection of these intervals is a singleton set whose
element is the real number being represented. Using a computability argument, we justify

an extension of the real numbers with infinity and bottom.

We then present the incremental digit representation, which brings together the digit
serial representation by Nielson and Kornerup [28] and domain theory. We show that the
standard real number representations such as decimal, continued fractions and redundant
binary fit into this framework. We then review the relevant properties of Mébius transfor-
mations (also known as homographies and linear {ractional transformations) before using
them to construct the incremental digit representations of general normal product and
exact floating point by Potts and Edalat [31, 32, 10]. We highlight the crucial features
of these representations in an attempt to answer the challenge by Vuillemin [35] to find

a rational choice for a normal form.

We then explore the relevant properties of 2-dimensional Moébius transformations,
first used by Gosper [14] and Vuillemin [35] to perform the basic arithmetic operations
on redundant continued fractions. Motivated by the goal to represent real functions
elegantly, we use these 2-dimensional Mobius transformations to construct the notion of
an expression tree and provide the link to domain theory. We present a straightforward
algorithm for converting an expression tree into the exact floating point representation,

involving the essential notion of the “redundant if” statement.

We first show how expression trees are constructed for the basic arithmetic opera-
tions and then we outline a general two part procedure for converting any function with
a power series representation into an expression tree via an intermediate continued frac-
tion representation. Using this procedure, we derive new algorithms for 7, e and the

transcendental functions [30].

Finally, we quantize information and use this idea to analyze the flow of information
around an expression tree in order to improve temporal efficiency. We also examine
the storage requirements of an expression tree in order to improve spatial efficiency.
This section culminates in the presentation of an efficient algorithm for converting an

expression tree into the exact floating point representation.
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2 Representing Real Numbers

A real number x can be represented by any sequence of nested closed intervals

[P0, q0) 2 [p1,q1] 2 [P2,qa) 2 -+

such that lim, o |pn — qn| = 0 and = € [pn, ¢s] for all n > 0. All real numbers have
reciprocals except 0. However, equality is not decidable on the real numbers and therefore
we must include 071, namely infinity co. This is known as the one-point compactification
of the real numbers R (or the extended real numbers). It is usually represented by the
stereographic projection o : R* — C

24 (2 —1)i
B x2+1

o ()

of the extended real numbers onto the unit complex circle as illustrated in figure 1.
The usual metric d¢ : R* x R® — [0, 2| on the extended real numbers is the chordal

distance given by

_ 2[z—y
Var+1/y2 + 1

This means that an extended real number x can be represented by any sequence of

(1)

dc (z,y) = |o(z) — a(y)]

nested closed intervals
[po, @] 2 [p1,q1] 2 [p2,q2) 2 - -
such that lim, .. dc (Pn,¢n) = 0 and z € [p,,q,] for all n > 0 where [p,, ¢,] denotes

the closed interval represented by the arc from o (p,) to o (gq,) anti-clockwise in figure
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Figure 2: A chain representing the extended real number x on the continuous domain

(IR>, D)

1. However, including oo leads to further difficulties. What are we to make of 0 x oo?
The only sensible answer is to introduce the concept of an “undefined number” or “not
a number” denoted by NaN in the floating point community. Domain theoretically, this

object is of course bottom.

3 Domains Theory and the Incremental Digit Rep-

resentation

A domain is a partially ordered set equipped with a notion of completion and approxi-
mation for modelling computation in various areas of computer science and mathematics
[1, 9, 8]. A sequence of nested closed intervals representing an extended real number
can be modelled by a chain in the continuous domain (IR*, D) [33], which is the set of
closed intervals in R (including R* itself) ordered by reverse inclusion as illustrated in
figure 2. The extended real numbers are represented by singleton sets on the rim of the
cone, while the other intervals are represented by points on the surface of the cone. The

bottom element 1s R*>.

The incremental digit representation defined below is similar to the digit serial number
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representation defined by Nielsen and Kornerup [28].

Definition 1 The tuple (B,A,¢,Q, ¢) is called an unsigned incremental digit rep-

resentation if

e lhe base interval B is a member of IR> [10],

the digit set A is a countable set of symbols,

the digit map i is a function A — B — B and

the terminator set () is a countable set of symbols and

the terminator map ¢ is a function 3 — B.

An infinite sequence of digits dodids - - - represents a real number x in B by inducing

an infinite sequence of nested closed intervals

[Pns Gn] = 1 (do) (4 (da) (¥ (d2) (... ¢ (dn) (B) ..)))

such that the induced sequence [po, go] 2 [p1,¢1] 2 [p2, 2] 2 -+ - is a representative of x.
Similarly, a finite sequence of digits dodids - - - d,, terminated by 7 € 2 represents a real
number z in B by inducing a finite sequence of nested closed intervals terminating with

the singleton set {z}.

W (do) (¥ (dr) (¢ (da) (.90 (dn) (¢(7))...))) = =

Definition 2 The tuple (B, 3,0, A, Q, ¢) is called a signed incremental digit rep-

resentation if

o (B,A 4,2, ¢) is an unsigned incremental digit representalion,
e the sign set Y is a countable set of symbols and

e the sign map ¢ is a function ¥ — B — R™.

A real number x in the unsigned incremental digit representation prefixed by a sign

o € X represents the real number ¢ (o) (z). Here are some examples:
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e The decimal representation on R

(10,1],Z,0 — 2 — 0 +x,{0,...,9} ,d— z+— HHL {1 ... 9} 70— L)

10 10
e The simple continued fraction representation on R

([1,00],Z,0|—>a:|—>0—|—%,N—{0},dl—>aﬂ—>d—|—%,N—{O,l},THT)

e The redundant binary representation on R

(1,1, Z,0 20 +2,{-1,0,1} ,d — 2 — 4= {~1,0,1} 7+ I)

4 Mobius Transformations

A Mébius transformation ¥ (M) is a linear fractional transformation on the extended

real numbers

ar +c¢
2
T bt d 2
parameterized by the four integers a, b, ¢ and d arranged conveniently in the 2 X 2 matrix
a c
M=
b d

The symbol e will be used to indicate the usual dot product between matrices and
vectors. However, the same symbol with a numerical subscript e,, will be used to indicate
a more general dot product between tensors, yet to be defined. The composition of
Mbbius transformations ¥ (M) and ¥ (V) is equivalent to the product of matrices M
and V.

(M) (¥ (N)(2)) =¥ (MeN)(x)

Therefore, ¥ is a morphism from the monoid of matrices with integer coefficients M
to Mobius transformations and the kernel of ¥ is the monoid of non-zero integers Z*.
Consequently, the monoid of Mobius transformations is isomorphic to the quotient monoid
M/Z*. In the light of this, we shall consider matrices to be equivalent up to scaling.

Therefore, we shall define the inverse of a non-singular matrix by
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The set of vectors with integer coefficients V with product x defined by

a C ac

b d bd

is a monoid. Therefore, the kernel of the morphism @ from the monoid of vectors V to

the extended real numbers given by

is also the monoid of non-zero integers Z*. In the light of this, we shall also consider

vectors to be equivalent up to scaling. The function apply given by

apply : @ (V) x U (M) — @ (V)
(z,f) — [(z)

is an action of the monoid of Mé&bius transformations on the extended real numbers
because

U(M)(D(V)=D(MeV).

For convenience, we will drop ¥ and ® whenever it is clear to do so. Also, Mobius

transformations and extended real numbers will be pictured abstractly by and

ﬁ respectively.

5 General Normal Products

Two real numbers x and 7 have the same sign if z X y > 0. Let V' and M" denote the
set of vectors and matrices with same sign integer coefficients. Let the unsigned general
normal product representation on [0, co| be the unsigned incremental digit represen-
tation ([0, c0], Mt ¥ V* @) and let the signed general normal product represen-

tation on R™ be the signed incremental digit representation ([0, co] , M, ¥ M™* ¥ V* @)
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[30]. The special base interval [0,00] [10] ensures that evaluating the information in a

matriz with integer coefficients defined by
info - (10, ) @
is computationally trivial.

a cC
[9 f} if det <0

_ a c b'd b d
info = (5)
b d a c
[f, 9} i det >0
d b b d
\
a c
For the neglected case, det = 0, it can be shown that dp,q,r, s € Z such that
b d
a c rp S
= poep . In which case
b d rq Sq
. 0 ¢ R>* ifrs<0
info = D . (6)
b d {—} ifrs >0
q

For completeness, we define the information in a vector by

a R>* ifa=0andb=0
info = a ‘ . (7>
b { 7 } otherwise

Clearly, by comparing equations (6) and (7), a singular matrix can be reduced to a vector.

The use of same sign coeflicients is justified by the following proposition.

Proposition 3 The information in a non-singular matrix is a subsel of the special base

winterval if and only if the non-singular matrix has same sign coefficients.

6 Exact Floating Point

General normal products can be used to elegantly represent algorithms derived from the

theory of continued fractions [30]. However, as a general tool for representing extend real
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numbers it is extremely difficult to control the size of integers and the flow of information.
Of course, the redundant binary representation does not suffer from these drawbacks.

Consider the following commuting diagram [32, 10]:

1 d
0 2
L1y L
1 -1 1 -1
1 1 1 1

In other words

-1

1 -1 1 d 1 -1 3+d 1+d
1 1 0 2 1 1 1—d 3—d

31
D():
13
10 < —)> 9 1

D, =

>
Il
A
X
8'

01

It follows from the basic properties of the redundant binary representation that

wf 2"+e+1l 2" +e—1 - .
D4, Dy, ... Dy, =" Y where c = d2"". (8)
Mm_c—1 M —c+1 P

The implication of this identity is that any sequence of n digit matrices can be compressed
into n + 1 bits of memory. For example, the two’s complement representation of ¢. Note
that c € {1 —2",...,2" =1} and @7 D, = @g:fd. Beware however that the original se-
quence of digits cannot usually be recovered except for n = 1. Let the unsigned exact
floating point representation on [0, cc| be the unsigned incremental digit represen-

tation ([0, o], Dy_101y, ¥, VT, @). This representation is called floating point because a

sequence of digits can be divided into two parts in a fashion reminiscent of an exponent
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and a mantissa. An infinite sequence of D; digits represents co. Any other infinite se-
quence of digits can be identified as a finite sequence of n Dy digits (exponent) followed
by an infinite sequence of digits starting with either a D_; or Dg digit (mantissa). In par-
ticular, the mantissa part represents a real number in info(D_1) Uinfo (Dg) = [0, 3|, while

the exponent part maps this number into the interval D} ([0,3]) = [2" — 1,272 — 1].

There are no “natural” constants in physics, goes the maxim, except zero, one and
infinity. Therefore, the most natural choice for redundantly dividing up the one-point
compactification of the real numbers is the four intervals [0, o], [1, —1], [00, 0] and [—1, 1].

These intervals can be represented by the four sign matrices

1 1
S =
-1 1
0 -1 10
S = S, =
10 0 1
1 -1
So =
1 1

which conveniently form a cyclic group of order 4 [32, 10, 27]. Let the signed exact
floating point representation on R™ be the signed incremental digit representation

<[07 OO] ) S{+,OO,*,0}7 \IJ) D{fl,O,l}u \117V+7 @)

7 2-dimensional Mobius Transformations

In order to compute the basic arithmetic operations on redundant continued fractions,
Gosper [14] and Vuillemin [35] used 2-dimensional Mébius transformations. A 2-dimensional
Mobius transformation Y (T) is a linear fractional transformation on the extended real

numbers

axy +cxr+ey+yg
bry+dz+ fy—+h

(9)

(z,y) —
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parameterized by the eight integers a, b, ¢, d, e, f, g and h arranged conveniently in the

a (&

c g a c e g
2% 2% 2tensor T' = , denoted more compactly by and

b / b d f h

pictured by

Xy
Let T denote the set of tensors with integer coefficients and let T" denote the set of

tensors with same sign integer coefficients. Let us refer collectively to the members of

L =VUMUT as linear fractional transformations and let Lt =Vt UM" UT*. For

a c P
any two vectors P = and () = , let ( P Q ) and denote
b d Q
a ¢ ) a ¢ e g
. For any two matrices R = and S = let R S )
b d b d f h
a e
c g R
denote and denote Let us define the
b f S
d h
transpose of a tensor by
T R
(rs) = . (10)

S
Let us define the left product e, of a tensor with a linear fractional transformation L €

VUM by

R Rel
.1L: (11>

S Sel

and the right product e5 of a tensor with a linear fractional transformation L. € VUM by
(R S).QL:(R.L S.L)- (12)

It can be shown that



T(T) (x,M(y)) = T(I'ex M)(z,y)
T (Viy) = Y (T'e1 V) (y)
T(T)(x,V) = ¥ (TeV)(x)

and

M(T(T)(z,y)) = T(MeT)(x,y)

WhereMO(R S) = (MoR MOS)

for VeVand M € M.

Define the information in a tensor T" by
info (T) = T (T) ([0, 5], 0, <)) (13)

A 2-dimensional Mobius transformation T (7') is monotonic in each argument separately,
with respect to the topology of the one-point compactification of the real numbers. There-

fore

. . a ¢ . ¢ g . g ¢ .
info = info Uinfo Uinfo Uinfo

d h

For convenience, we will drop T whenever it is clear to do so.

8 Expression Trees

Definition 4 An unsigned expression tree is a binary tree. Fach node may be either
e a tensor T € T with 2 children or
e a malriz M € Mt with 1 child or

o q vector V € VT with no children.

Definition 5 A signed expression tree is a tree consisting of either

12



root node

exposed
leaf arguments

node B

Figure 3: A typical expression tree

o alensor’l' € T connected to two unsigned expressions trees or
o a matrix M € M connected to one unsigned expressions tree or
o q vector V €V with no children.

Let E and E' denote the set of signed and unsigned expression trees respectively. An
expression tree (e.g. as shown in figure 3) induces a directed set in the continuous domain
(IR*, D) (e.g. as illustrated in figure 4). Fach element of the directed set corresponds
to a particular cut in the expression tree. This element is then the interval derived by
plugging each ezposed argument with the special base interval [0, co].

An expression tree represents an extended real number z if the least upper bound of
the induced directed set is the singleton set {x}. The expression tree F € E consisting
of a root node L € L connected to expression trees Iy . ny € Et with N € {0,1,2} will
be denoted by L{FE4,..., Ex}. Note that the general normal product representation and

exact floating point representation are just special expression trees.

8.1 Matrix Application

The application of a matrix M € M to a signed expression tree L {FEy, ..., Ex} € E can

be reduced to the signed expression tree with the root node M o L connected to the same

13



{eo}

{-1} {1}

boundary

Figure 4: A directed set representing the extended real number z on the continuous

domain (IR>, D) induced by an expression tree

unsigned expression trees Fyy | n1.

MILAE,...,Ex}] = (M e L) {Ex,..., Ex}

8.2 Reciprocal and Negation

Reciprocal and negation are achieved by matrix application. For example, the signed

expression tree corresponding to the reciprocal of the signed exact floating point number

So {Day {Da, {317} 1

S | {Duy { D, - 11}

In fact, a purely symbolic algorithm is possible here for converting this expression tree

into the signed exact floating point representation.

8.3 Tensor Application

The application of a tensor T € T to two signed expression trees K{FEy,..., Ey},
L{Fy,...,Fy} € Ewith K, L e VUM and M,N € {0,1} can be reduced to the signed

expression tree with the root node I' 1 K o9 I connected to the same unsigned expression

14



trees Ky, ary and Fiy wy.
T[K{El,...,EM},L{Fl,...,FN}] = (T.l K.Q L) {El,...,EM,Fl,...,FN}

Note that a signed expression tree with root node 7" € T can be converted into a sign
matrix Sy o 0} connected to an unsigned expression tree using the reduction rules in

the section 9.

8.4 The Basic Arithmetic Operations

The basic arithmetic operations +, —,x and <+ are achieved by tensor application as
pointed out by Gosper [14]. For example, the signed expression tree corresponding to

the subtraction of the two signed exact floating point numbers S, { Dy, { Dy, {---}}} and
SP {D61 {DEQ { ' }}} 18

01 -10
00 0 1

4 SU ®) Sp {Dd1 {DdQ {"'}}7D61 {D62 {}}}

9 Reduction Rules

In this section, We present the core reduction rules for converting an expression tree into

an exact floating point number. The ethos behind the reduction rules is:

Emission Extract information from the root node in order to construct an exact floating

point number if you can.

Absorption Assimilate information from the depths of the expression tree into the root

node if you have to.

In section 12, the reduction rules are enhanced for efficiency reasons using information

flow analysis.

9.1 Emission
Generally speaking a matrix E can be emitied from the root node L € L provided
info(E) Dinfo(L) & K 'e Le L. (14)

15



For a signed expression tree, only a sign matrix S{; 0} may be emitted leaving an

unsigned expression tree

E— S, {5, [E]}

provided S, ' [E] € E". For an unsigned expression tree, only a digit matrix D¢ 1oy

may be emitted leaving another unsigned expression tree
E— D, {D;l [E]}

provided D;l [E] € ET. The digit matrix Dy should be avoided, if given a choice, because

it involves slightly more computation.

9.2 Absorption

It has been shown earlier that

e matrices can always be assimilated with tensors, matrices and vectors using dot

product and

e tensors can always be assimilated with matrices and vectors using left and right

products.

However, tensors cannot be assimilated with tensors without introducing rank 4 ten-
sors. The next best thing is an information exchange. Only the digit matrices Dy_q 1y
should be exchanged. This policy ensures a linear integer bit size growth for the coeffi-

clents 1n the two tensors.

9.3 Strategy

R
Consider an arbitrary tensor 1T = ( P Q ) = € T in which no more emis-

S

sions are possible. We need to decide whether to absorb from the left or from the right.
A left absorption increases the information in R and S, while a right absorption increases
the information in P and Q). So, always left absorbing whenever the information in R

and S are overlapping is a workable strategy.
strategy (1) = if info (R) Ninfo (S) is notempty then 1 else 2 (15)
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Others strategies have been investigated, but this one has proved the most efficient in

practice.

9.4 Redundancy

It is well known that the basic arithmetic operations are computable only for redundant
representations of the real numbers [26, 23, 7, 34]. In effect, non-determinism is being
traded for computability. It is also well known that basic predicates, such as equality
and comparison, are not computable. Consequently, the standard “if” statement should

be replaced by the “redundant if ” statement with the reduction rule

P ifx<p
rif v < [p,q| then Pelse @ — ¢ {P,Q} ifx € [p,q] (16)
Q ifr>gq

where {P,Q)} denotes a non-deterministic choice between P and (). This apparently

problematic non-determinism can and must be annulled by the side condition

P=qQ if  x€lpql.

The “redundant if” statement is similar to the quasi-relational comparison operator
<. introduced by Boehm and Cartwright [5, 4]. The “redundant if” statement will not
be used explicitly in this article. However, it will be used implicitly in statements like
“f f (d) for some d € D”. This notion is also used in the algorithms of section (11) for
the transcendental functions by utilizing the idea of analytic continuation in complexity

analysis.

9.5 Straightforward Reduction Rules

All the ideas above can be brought together into the following compact algorithm:

sem : ExXN-—-E

, ifS;'leLel*
SU {dem (;987 Sz;l [E] 72)}

sem (F,i) = for some 0 € {+,00,—,0}

sem (L [Fy,..., Fn],i) otherwise

17



where F,, = ab (L, En, A, (L)) and L{Ey,...  Exn}=F
dem : M'xE"xN-—E"
(@i {1} ifj=0or LeV
if D;'e L €L for

dem (O0,8.3) = § dem (@ DBy

| dem (DL, L|Fy,...,Fx],j)  otherwise
where F,, = ab (L, En, A, (L)) and L{Ey,...  Exn}=F

A, : L — boolean

A, (L) = L¢T orstrategy (L) =n

ab : L xE' x boolean — E*
DI{E} if b = false
ab(K,FE)b) = dem (DY, E,1) f KeTand LT
F otherwise

The “sign emit” term sem (F, i) partially converts the signed expression tree F into
the signed exact floating point representation. In particular, it returns a signed expres-
sion tree of the form S, {D’{FE’'}} where S, is the required sign, D" is the i required
digits compressed according to equation (8) and £’ is an unsigned expression tree for
the remaining digits (i.e. a continuation). The “digit emit” term dem (D%, E, j) partially
converts the unsigned expression tree % { E'} into the unsigned exact floating point rep-
resentation. In particular, it returns an unsigned expression tree of the form ’ijg {E'}
where ’ijy is the (i 4 j) required digits compressed according to equation (8) and E' is
an unsigned expression tree for the remaining digits (i.e. a continuation). The “absorb”
term ab (K, E/,b) converts the unsigned expression tree E into another unsigned expres-
sion tree with a root node ready for absorption (by square bracket application) into its

parent node K. The boolean b determines whether any information is actually required.

18



10 Continued Fractions

The development

(17)

is called a continued fraction [6] and it represents the Cauchy sequence (z,,), -, with limit

x where

bo
by

Ty = Qg +
a1 +

b
as + 2

an

A simple continued fraction has b, = 1 for all n > 0. For convenience, we shall also

denote the continued fraction in equation (17) by
[ao, bo; a1, by;as, by; .. ] .

The continued fraction in equation (17) can be converted directly into the general normal

product

Qg b() aq bl a9 bQ ﬁ (7% bn
1 0 1 0 1 0 n—o \ 1 O

provided ag,by € Z and a,,b, € N for all n > 1. Otherwise, a sequence of matrices

M, € M for all n > 0 must be found satisfying

an

M ' e o M, e M"
1 0
for all n > 1. In which case
a b > 079 bn
1 0 — 1 0
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11 Real Functions

The Taylor series of a function f (z) can often be used to derive a number of continued
fractions with the general form

Bo ()
B (z)

ay (x) + ﬂ2—<$)

(18)

including the Stieltjes, Jacobi and Euler types [36, 3, 30]. Sometimes these continued

fractions can be converted into an expression tree

fx) = T

(19)

T,

for some Ty € T and 7}, € T* for all n > 1 [30]. Note that the orientation has been
carefully chosen to ensure that the strategy in equation (15) works. A general procedure

for this is:

Part (i) Using the simple matrix identities

a cp d f B a c¢ d f (20)
b 0 e O b 0 ep 0O
a c¢ e g c a f h (21)
b d f h d b e g
01 10_0[ an  Cp 10_0[ dy, by (22)
1 0 n=0 bn dn n=0 Cn Qn
a c aXx cA
= for A #0 (23)
b d bA dA



find

such that

10_0[ an () B, (x) 10_0[ an® + €, cp + gy
n—o \ 1 0 n—o \ bpx+ f, dpx+hy

Part (i) Find a sequence of matrices M,, € M for n > 0 and a matrix N such that

M ' oT, e NeyM,cT"

for all n > 1. In which case
F(N(y) = (loer N ey My){y, Ei(y)} where
En(y) = (M, T, o1 N ey M) {y, Enii(y)}

for all y € [0,00]. Note that the matrix N effectively limits the domain of the
function to info (V).

The above technique will be used in the following subsections to derive algorithms
for the basic set of transcendental functions; namely square root, natural logarithm,
exponential, tangent and inverse tangent. The other transcendental functions can be

derived from this basic set.

2! = exp(ylog(z))

_ 0110 o x

sin(z) = oot [tan (5) ,tan (5)}
-1 0 0 1 x T

cos(x) = L 0o [tan (5) ,tan (5)}

: x?
— arct
arcsin () arctan T
( E xQ)
arccos () = arctan

2

| 100 -1
sinh (z) = lexp (z) , exp (2)]
011 0
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—
o
o
—

cosh (z) = lexp (z) , exp (2)]
0110
1 00 -1
tanh (z) = lexp (z) , exp (2)]
1 00 1
arcsinh (z) = log (a: + Va?+ 1)
arccosh () = log (a: + Va? — 1)
arctanh (z) = %Iog (Seo [])

11.1 Square Root

Let loop (T, ) be the function represented by the expression tree in equation (19) with

T, =T for all n > 0. It can be shown, for example, that

1 11

o

vz = loop » T
01 11
2 001

r+vVa2+1 = loop ¥
0010

The usual algorithm for converting an expression tree into an exact floating point number

can be improved dramatically for loop (7', z) by employing a feedback mechanism.

~

T loop(T,x)

N

For loop (T, z) with T'€ Tt and z € [0, o0

1. Ensure z 1s an unsigned exact floating point number.

2. While D,;' ¢ T ey D; € T" for some d € {—1,0,1}, emit digit D, and set T to
D;l o ey D,

3. Absorb a digit D, from x, set T to T e; D; and repeat 2.
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This algorithm for loop (T',z) can be improved even further if x is a rational number.

For loop (1, V) with T € Tt and V € V*:

1. Set M toT e
q

2. If D { e MeD_; € MY then set d to —1 else set d to 1.

3. Emit digit Dy, set M to D;l o M o Dy and repeat 2.

11.2 Logarithm

The Stieltjes type continued fraction for logarithm [3] is

|og(1+a:)=[o,a:;1,§;<1 ne 1<n+1)x-> ] (24)

2\ dn+2 " 4n+2
Note that
T 00 nx (n+1)x
0 x L3 H in 12 L s
1 0 1 0 /,55\1 0 1 0
01 1 =z > 1 2 1 L
_ H 2 2n+1 by (20>
10 x 0 /) .5 % 0 2n“11 0
> 0 T 0 n+1
= |] by (23) and (22).
o \ T 2n+1 n—+1 2

Therefore, according to part (i), the corresponding sequence of tensors is

010 0 0 n-+1
Tn: o)
1 0 0 2n+1 n+1 2

Since T,, € Tt for all n > 0, this immediately gives an expression tree for log (x) valid

1 -1
for all x € [1,00]. However, we can do better. Note that for M, = and
0 n+1
1 -1 '
N = , M ' eT, e N eyM, €T for all n > 1. Therefore, according to part
0 1
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(ii), we have

n 2n+1 n+1 0 _
log (z) = letkE, (z) = {z, Epy1 ()} in
0 n+1l 2n+1 n

1 1 -1 -1
{qul (aj)}
01 1 0

for all x € [0,00]. This expression tree is only efficient for x close to 1. However, the

1

2 2] by repeated application of the identity

domain can easily be reduced to [

log (z) = log (g) + log (2).

11.3 Exponential

The Jacobi type continued fraction for exponential [12, 13] is

x 2 22
B P e o
[ 2712 16n2 —4 n>2
Note that
x 1132 o0 1132
L @ 1-=5 H ' s
1 0 1 0 neo \ 1 0
1 12 z 00 1 _x
— 2 2 H (4’!7,72) by (20>
1 0 1 0/ ,5 ﬁ 0
242 x i in+2 x
= 11 by (23).
2—x x | 24 T 0

Therefore, according to part (i), the corresponding sequence of tensors is

;

1 1 20 ]
Ifn=20
-1 1 2 0
T, =
01 4n+2 0 )
itfn>1
1 0 0 0

\
Note that S_' @ T}, @1 Sy 3 Sy, € T" for all n > 1. Therefore, according to part (i), we
have

n+2 2n+1 2n 2n+1

exp (So {y}) = let B, (y) = omil 9 ot 1 9m {v, Bny1 ()} in Eq (y)
T mn T T
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for all y € [0,00]. This deals with exponential for x € |—1,1|. For x outside this range,

o) - e ()

until € [—1,1]. A general normal product for e can be derived

repeatedly apply the identity

10_0[ 2n+2 2n+1 2n 2n+1 1 10_0[ 2n+2 2n+1
€ = .1 =
n—o \ 2n+1 2n 2n+1 2n+2 0 n—o \ 2n+1 2n

with a good convergence rate because the determinant of each matrix has an absolute

value of 1.

11.4 Pi

A very fast formula for 7 can be derived using Ramanujan’s formula [15, 30]

o0

| § (e L2000 5451401340 + 13501409
(n1P(3n)  (6403203)"+

(26)

3 |

n=0

Ramanujan’s formula can be viewed as the instantiation of the Taylor expansion of a
function f (z) =7, anz"

mf<1>

s 6403203
(L1 (63451401540 + 13591409
a, = (—
(n!)3(3n)! 426880

The general formula for the Fuler continued fraction [36] of a Taylor expansion f (z) =

[o'e] n
no QnT" 18

f(2)= 0,a0;1,_2x;<1+“n+1x,_“n+2;> .
a n>0

0 Ap, Ap+1
Note that
0 aq 1 —%a: oo 1+an+1$ _ On42
Qg H 47 Ant1
1 0 1 0 n=0 1 0
n+1
0 ag 11\t =l
= an i by (20)
1 0 1 0 n—0 — 0
(e2%
1+ -2y 1
_ ag 0 ﬁ +an71$
11 )5\ =2y o
Ap—1



and

an (2n — 1) (6n — 5) (6n — 1) (5451401347 + 13591409)

an,lﬂj 1093905886003200073 (545140134n — 531548725) ’
Therefore

\/10005 13591409 0 > b, —c¢, b,

- = H where

426880 426880 | = Cn, 0
by = 10939058860032000n° (545140134n — 531548725)

¢n = (2n—1)(6n —5) (6n — 1) (545140134n + 13591400) .

We can do even better than this. For
5451401350 + 13591410 5451401337 + 13591408

n — )

—n—1 n+1
-1 bn — Cn bn . .
M, "o e M, € T* for all n > 1. Therefore it can be shown, with some
Cn 0
rescaling, that
/10005 6795705 6795704 \ 5
= H (), where
T

213440 213440 | =

en—d, —c, e,+d,—c,
en+d, +c, e, —d,+cn
d, = (2n—1)(6n—-5)(6n—1)(n+1)
e, = 10939058860032000n".

The convergence rate for this general normal product is extremely impressive. FEach
matrix corresponds to approximately 14 decimal places of information. Note that the
entries of the matrix @), ® Q,41 are divisible by 2 (n 4 1). Therefore the entries of the
matrix HZ«LV:1 (), are divisible by at least N!. However, we conjecture that the entries of

the matrix Hgil (), are divisible by sV

19N -1"

11.5 Tangent

A continued fraction by Lambert [21] for tangent is

41 4
tan (z) = |0,1; (2 H Ly _dntS . (27)
T T n>0
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According to part (i),

dntl  q _dnt3 1
1 0 1 0
> 0 x 0 T
= |] by (23) and (22)
n—o \ = 4n+1 r —4n—3

and the corresponding sequence of tensors is

;

010 0 )
if n even
1 00 2n+1
T, =
010 0
if n odd
1 00 —2n—1

\

for all n > 0. Note that Sgl o7, e Syey Sy € Tt for all n > 1. Therefore, according to

part (ii) and the application of equation (21), we have

2n4+1 2n—1 2n+4+1 2n+3 )
tan (So{y}) = letk,(y) = 1Y, Enyi (y)} in
n+3 2n+1 2n—1 2n+1

11 -1 -1
20 0 2

{v, Ex (y)}

for all y € [0,00]. This deals with tangent for x € [—1,1]. For z outside this range,

repeatedly apply the trigonometric identity

2t 0 110
tan (z) = il <2> = [tan (f) ,tan (f)}
1 —tan (g) -1 0 0 1 2 2
. 0 110
until z € [—1,1]. Beware that ¢ Tt. IHence, the subtle presence of
-1 0 01

square brackets instead of round brackets (see section 8.3).

11.6 Inverse Tangent
A continued fraction for inverse tangent [36] is
arctan (z) = [O,x; (2n —1,n’z% >n>1} . (28)
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The formula stated by Vuillemin [35] can be derived using equation (20)

0 =x 10_0[ on—1 n2z? 01 10_0[ on—1 n’z
1 0 nel 1 0 1 0 nel x 0

and simplified even further using equation (22) to

> 0 T

i\ nPz 2n—1

Therefore, the corresponding sequence of tensors according to part (i) is

0 10 0

T, =
(n+1)% 0 0 2n+1

Since, T,, € Tt for all n > 0, this immediately gives an expression tree for arctan (x) valid

for all z € [0, co]. However, the efficiency of this expression tree decreases with increasing

1 -1
xz. Note that for M, = and N = S, Mnill o7 o NeyM,cT" for
n+1 n+1

all n > 1. Therefore, according to part (ii), we have

2n+1 n 0 n+1 :
arctan (So {y}) = letE, ()= {y, Ens1 ()} in
n+1 0 n 2n+1

11 -1 -1
20 0 2

{y, B (y)}-

This equation for inverse tangent can be used to capture all the extended real numbers

when used in conjunction with the following trigonometric identities:

arctan (S {y}) = arctan (So {y}) + 7

arctan (S, {y}) = arctan(So{y})+ g

37

arctan (S_ {y}) = arctan(So{y}) + T

12 Information Flow Analysis

One of the advantages of the exact floating point representation over the general normal

product representation is that it gives a natural unit of information. Consider the metric
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dy : |0,00] x [0,00] — [0,2] defined by

dy (z,y) = [So(x) — So(y)] ,

which is topologically equivalent to the chordal metric in equation (1) restricted to the

base interval [0, co] [10]. Note that

dy (Da (x),Da (y)) = [(So e Da) (z) = (So® Da) (y)]
1 d 1 d 1
®So | () — * S| ()| = gt ().
0 2
Consequently, the units of information stored in a linear fractional transformation can be

estimated by the function units : LT— N U {co} given by
units (L) = |1 — log, (width (info (Sp e L)))| where width ([z,y]) = |z — ¥ (29)

where |x] is the greatest integer less than or equal to z. This way, it can be shown that
at most units (L) digits can be emitted from an arbitrary linear fractional transformation

L € Lt and at least units (L) — 1. In particular, units (V) = oo for V' € V*tand for

a cC
M = c M™*

12.1 Matrix Lazy Flow Analysis

For an arbitrary matrix M € M and natural number €, we need to find the maximum
units of information 6 (M, €) that can be absorbed into M such that it contains at most
€ units of information. In other words, such that at most € digits can be emitted. We
wish to apply the function 6 (M, €) dynamically rather than statically in a way analogous
to damping in a mechanical system. In this way, we can efficiently get the information
we want without demanding even a single unit of information too much from the deeper

layers of an expression tree. The problem can be expressed mathematically as:

1
Find maximum 6 such that dy (M (x), M (y)) > % whenever dj (z,y) > 2
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Note that
dy (M (x), M (y)) = [(Soe M) (x)— (Soe M) (y)l

— | (Soe M eS;") (So(w)) = (Soe MeSy") (So(v))

= [(Soo Mo syY) (2)

dy (x,y) for some z € (—1,1)

by the mean value theorem provided that the function (So e MeSy 1) (x) is continuous

over [—1,1] and differentiable over (—1,1). This condition is certainly satisfied for all

a ¢
M e M'. Given that M = 1t can be shown that

b d

4det (M)
((a+b—c—d)z+(a+b+c+d)”
Therefore, if we define the function = : MI" — Q by

(So o Me55") () =

1/ det (M
=(M) = inf (| (So e Me5y") (-1,1])]) = (max(”a j; ’ yl’+dy))2' (30)
Therefore, the maximum 6 is given by
8 (M,e) =c+ |logy, (= (M))]. (31)

Finally, we need to convert this formula into an efficient algorithm. Let # (a) denote
the number of bits required to represent the absolute value of the integer a. Using the
identities
= ~|-a
— #(-1
= #(a) — if aispower of 2then 1 else0

IA

la+b] < la] +[b] +1
it can be shown that the algorithm
A7 (M,¢) = lete=|det(M)| anda = max (Ja + b, |c+d]) in
€+ #(e) — # (on) — if acis power of 2 then O else 1

provides a value equal to or one less than 6 given in equation (31) (i.e. it is a conservative
approximation). In some cases, due to its conservative nature, even though ¢ > 1 and no

digits can be emitted, the flow analysis given by A| indicates that no information needs

to be absorbed. So, we really need the function Al (M, €) = max (1, A (M, 6)) as well.
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12.2 Tensor Lazy Flow Analysis

R
For an arbitrary tensor T = ( P Q ) = € T and natural number ¢, we

S

need to find the maximum units of information é; (7', €) and 65 (T, €) that can be left and
right absorbed respectively into 1" such that it contains at most ¢ units of information.

The problem can be expressed mathematically as:

Find maximum 6; (7', €) such that for all w € [0, o]
1 1
dy (T (z,w),T (y,w)) > B whenever d; (z,y) > % and
find maximum 65 (T, €) such that for all w € |0, 0]
1
dy (T (w,z), T (w,y)) > % whenever dy (z,y) > 267"
By symmetry, it is clear that 61 (T, €) = 89 ( ) Note that for U = SpeT e, S, 5.5,*

dy (T (w,z), T (w,y)) = |(SoeT)(w,z) = (SoeT)(w,y)|
= [U (So (w), So (x)) = U (So (w) , So ()|
= |Us (So (w),z)| dy(z,y) for some z € (—1,1)

where Uy (z,y) is the partial derivative of U with respect to y. It can be shown that

inf (|0 ([~1,1], [~1,1])]) = min (Z (P),Z(Q))

using the definition of the function = : MT — @ in equation (30). This means that the

algorithms

Ay (Tye) = (min (A; (R,e), Ay (S, e)))
A, (Te) = (min(A; (P6), A (Q.0)))

provide conservative approximations for 6; and d, respectively. Note that the overloading
of A] on matrices and tensors is intentional. In some cases, due to its conservative nature,
even though € > 1 and no digits can be emitted, the flow analysis given by A] and A,
indicate that no information needs to be absorbed from the left or from the right. So in
these cases, we need to decide whether to absorb just one from the left or just one from

the right. So, let us define A} . (T, €) by

{12}
AN (T, e) =if A7 (T,e) <0and A, (T,e) < 0then A, (T) else A, (T,e).
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12.3 Efficient Linear Fractional Transformations

It should be noted that it is not always desirable to assimilate a vector or a matrix into
its parent node. It depends on whether the vector or the matrix is spatially efficient
relative to the information that it contains. The idea is that if a vector or a matrix is
efficient then it should be assimilated directly otherwise only the digits Dy_; ¢,1) should
be exchanged. Actually, it should also depend on the amount of information € required

as well. A particularly useful definition is

efficient : L' x N — boolean

# (1)

efficient (L,¢) =
n

+ o min (¢, units (L)) <

where o and (3 are adjustable parameters (e.g. « = 2 and § = 32), # (L) denotes the
total number of bits required to represent the coefficients in L and n is the number of

coeflicients in L.

12.4 Efficient Reduction Rules

All the efficiency related ideas above can be brought together into the following compact

algorithm:
edem : MxE'xN-—E"
(DB} ifj=0or LEV
edem (’Di,E,J) _ edem (géﬁdaDgl B],j— 1) if D;'e L €L for
some d € {—1,0,1}
\ edem (’Dé, L [Ff“, e ,F]H ,j) otherwise
where F,f =eab (L, E,, A} (L, j))
and L{F,,...,Ex} =F
eab : LxEtxZ—E"
[ D0(E} ife<0
cab (K. 1.¢) — LlFr, . By if efficient (L, €) and

(K¢Tor L¢gT)

\ edem (D), F,¢)  otherwise
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where F,, =eab (L, E,, A, (L.¢))
and L{El,...,EN} =F

The “efficient digit emit” term edem (D?, F, j) partially converts the unsigned expres-
sion tree ®° {F} into the unsigned exact floating point representation. In particular, it
returns an unsigned expression tree of the form ’ijg {E'} where ’ijj is the (i + j) re-
quired digits compressed according to equation (8) and E’ is an unsigned expression tree
for the remaining digits (i.e. a continuation). The “efficient absorb” term eab (K, E ¢)
converts the unsigned expression tree F into another unsigned expression tree with a root
node ready for absorption (by square bracket application) into its parent node K. The
integer ¢ indicates the maximum required units of information in the root node. Note
that A} is used when a specified number of digits Dy 1,013 is required from an expression
tree, whereas A~ is used when a conservative number of units of information is required
from an expression tree.

Any eflicient implementation must avoid re-evaluating the same expression. This
means that the language used must support references, pointers or destructive data types
of some sort. For instance, there need only be one instantiation of the argument xz
in equation (19). Finally, it should be pointed out that rescaling the coeflicients of a
linear fractional transformation down by their greatest common divisor is inefficient and

generally unnecessary. However, rescaling down by 2 is efficient and necessary.

13 Conclusion

We started this article by noting that any real number can be represented by a sequence
of nested closed intervals. We then put this idea into the formal context of an incre-
mental digit representation. In particular, we presented the decimal, continued fraction,
redundant binary, general normal product and exact floating point representations in
this framework. We pointed out that any such sequence can be seen as a chain in the
continuous domain of extended real numbers.

We then introduced the notion of an expression tree and linked it to the concept of
a directed set in the continuous domain of extended real numbers. We then outlined a

general two part procedure for converting any function with a power series representation
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into an expression tree. This general procedure was applied to the transcendental func-
tions culminating in the introduction of new algorithms for 7, ¢ and the transcendental

functions.

We presented the “redundant if” statement, which provides a simple and efficient
means to overcome various computability problems during the construction of various
expression trees. However, the domain theoretic meaning of “redundant if” is not fully
understood at this time. Straightforward reduction rules were presented to allow any valid

expression tree to be converted incrementally into the exact floating point representation.

The digit set in the exact floating point representation has properties that enable the
size of integers to be controlled and the flow of information to be analyzed in an expression
tree. As a result, we introduced an efficient algorithm for converting an expression tree
into the exact floating point representation. The quantization of information means that
the complexity of these reduction rules is amenable to analysis, although this has not been
done yet. Although, both the spacial and temporal aspects of exact real arithmetic have
been tackled in this article, for many applications the spacial overhead is still unavoidably
prohibitive. This is essentially because, in general, the entire history of every variable
must be remembered, not just the last value as in a conventional floating point application.
Nevertheless, exact real arithmetic is still useful for many small applications where the
user wants guaranteed correct answers, such as verification of algorithms. The efficiency
of the exact real arithmetic presented in this article can undoubtedly be improved even

further by hardware assisted software and parallel processes.
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